Seismic wave propagation simulations on low-power and performance-centric manycores

نویسندگان

  • Márcio Bastos Castro
  • Emilio Francesquini
  • Fabrice Dupros
  • Hideo Aochi
  • Philippe Olivier Alexandre Navaux
  • Jean-François Méhaut
چکیده

The large processing requirements of seismic wave propagation simulations make High Performance Computing (HPC) architectures a natural choice for their execution. However, to keep both the current pace of performance improvements and the power consumption under a strict power budget, HPC systems must be more energy e cient than ever. As a response to this need, energye cient and low-power processors began to make their way into the market. In this paper we employ a novel low-power processor, the MPPA-256 manycore, to perform seismic wave propagation simulations. It has 256 cores connected by a NoC, no cache-coherence and only a limited amount of on-chip memory. We describe how its particular architectural characteristics influenced our solution for an energy-e cient implementation. As a counterpoint to the low-power MPPA-256 architecture, we employ Xeon Phi, a performance-centric manycore. Although both processors share some architectural similarities, the challenges to implement an e cient seismic wave propagation kernel on these platforms are very di↵erent. In this work we compare the performance and energy e ciency of our implementations for these processors to proven and optimized solutions for other hardware platforms such as general-purpose processors and a GPU. Our experimental results show that MPPA-256 has the best energy e ciency, consuming at least 77% less energy than the other evaluated platforms, whereas the performance of our solution for the Xeon Phi is on par with a state-of-the-art solution for GPUs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Wave-Field Propagation Modelling using the Euler Method

Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...

متن کامل

Numerical Solution of Seismic Wave Propagation Equation in Uniform Soil on Bed Rock with Weighted Residual Method

To evaluate the earth seismic response due to earthquake effects, ground response analyses are used to predict ground surface motions for development of design response spectra, to compute dynamic stresses and strains for evaluation of liquefaction hazards, and to determine the earthquake induced forces that can lead to instability of earth and earth-retaining structures. Most of the analytical...

متن کامل

Study on Free Vibration and Wave Power Reflection in Functionally Graded Rectangular Plates using Wave Propagation Approach

In this paper, the wave propagation approach is presented to analyze the vibration and wave power reflection in FG rectangular plates based on the first order shear deformation plate theory. The wave propagation is one of the useful methods for analyzing the vibration of structures. This method gives the reflection and propagation matrices that are valuable for the analysis of mechanical energy...

متن کامل

High-Frequency Simulations of Global Seismic Wave Propagation Using SPECFEM3D_GLOBE

SPECFEM3D_GLOBE is a spectral-element application enabling the simulation of global seismic wave propagation in 3D anelastic, anisotropic, rotating and self-gravitating Earth models at unprecedented resolution. A fundamental challenge in global seismology is to model the propagation of waves with periods between 1 and 2 seconds, the highest frequency signals that can propagate clear across the ...

متن کامل

Sustained Petascale Performance of Seismic Simulations with SeisSol on SuperMUC

Seismic simulations in realistic 3D Earth models require petaor even exascale computing power to capture small-scale features of high relevance for scientific and industrial applications. In this paper, we present optimizations of SeisSol – a seismic wave propagation solver based on the Arbitrary high-order accurate DERivative Discontinuous Galerkin (ADER-DG) method on fully adaptive, unstructu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Parallel Computing

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016